SUMMARY REPORT

44 EAST CYPRESS STREET (FORMERLY 222 EAST CYPRESS STREET)

LAUREL BAY MILITARY HOUSING AREA

MARINE CORPS AIR STATION BEAUFORT

BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT

44 EAST CYPRESS STREET (FORMERLY 222 EAST CYPRESS STREET)

LAUREL BAY MILITARY HOUSING AREA

MARINE CORPS AIR STATION BEAUFORT

BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

JUNE 2021

Table of Contents

1.0	Backgroun	TION
1.2 2.0		VAL AND ASSESSMENT PROCESS
2.1 2.2	UST REMO	val and Soil Sampling
3.0	PROPERTY	STATUS4
4.0	REFERENC	ES4
Table	1	Table Laboratory Analytical Results - Soil Appendices
Appen Appen Appen	dix B	Multi-Media Selection Process for LBMH UST Assesment Report Regulatory Correspondence

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon

QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank

VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 44 East Cypress Street (Formerly 222 East Cypress Street). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 44 East Cypress Street (Formerly 222 East Cypress Street). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 222 East Cypress Street* (MCAS Beaufort, 2014). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On July 2, 2013, a single 280 gallon heating oil UST was removed from the landscaped area adjacent to the driveway at 44 East Cypress Street (Formerly 222 East Cypress Street). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 6'0" bgs and a single soil sample was collected from that

depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 44 East Cypress Street (Formerly 222 East Cypress Street) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 44 East Cypress Street (Formerly 222 East Cypress Street). This NFA determination was obtained in a letter dated July 1, 2015. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

Marine Corps Air Station Beaufort, 2014. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 222 East Cypress Street, Laurel Bay Military Housing Area, March 2014.

South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.

Table

Table 1

Laboratory Analytical Results - Soil 44 East Cypress Street (Formerly 222 East Cypress Street) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort

Beaufort,	South	Carolina

Constituent	SCDHEC RBSLs (1)	Results Sample Collected 07/02/13
Volatile Organic Compounds Analyzed	by EPA Method 8260B (mg/kg)	
Benzene	0.003	ND
Ethylbenzene	1.15	ND
Naphthalene	0.036	ND
Toluene	0.627	ND
Xylenes, Total	13.01	ND
Semivolatile Organic Compounds Anal	yzed by EPA Method 8270D (mg/kg)	
Benzo(a)anthracene	0.66	ND
Benzo(b)fluoranthene	0.66	ND
Benzo(k)fluoranthene	0.66	ND
Chrysene	0.66	ND
Dibenz(a,h)anthracene	0.66	ND

Notes:

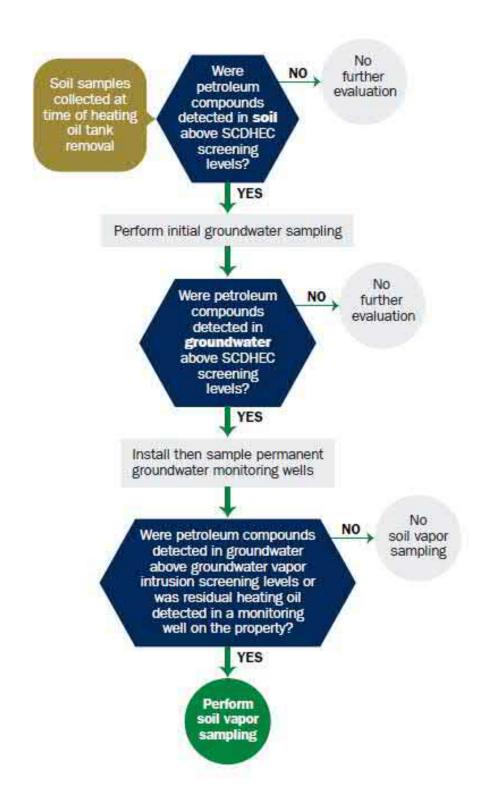
Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram

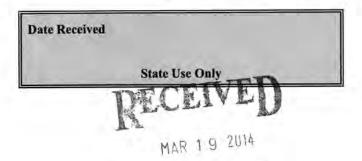
ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.


RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Appendix A Multi-Media Selection Process for LBMH



Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

SO DHEC - Bureau of Land & Waste Management

I. OWNERSHIP OF UST (S)

Owner Name (Corporation	ommanding Officer Attn: NI n, Individual, Public Agency, Other)	index (claig line)
P.O. Box 55001		
Mailing Address		
Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

ry Housing Area, Marine Corps Air Station, Beaufort, SC
Site Identifier
et, Laurel Bay Military Housing Area d (as applicable)
Beaufort
County
0

Attachment 2

III. INSURANCE INFORMATION

	Insurance	Statement	
qualify to receive state monies	to pay for appropriate site fund, written confirmation	at Permit ID Number te rehabilitation activities. Before particip n of the existence or non-existence of an expleted.	pation is
	ere ever been an insurance NO (check one)	e policy or other financial mechanism that	covers this
If you answered	YES to the above questi	ion, please complete the following information	ation:
1	My policy provider is: The policy deductible is: _ The policy limit is:		
If you have this type of	f insurance, please include	e a copy of the policy with this report.	
I DO / DO NOT wis		JPERB Program. (Circle one.)	
v.	CERTIFICATION	(To be signed by the UST owner)	
I certify that I have persona attached documents; and the information, I believe that the Name (Type or print.)	lly examined and am fa lat based on my inquir le submitted information	amiliar with the information submitted y of those individuals responsible for n is true, accurate, and complete.	in this and all obtaining this
Signature To be completed by No.	otary Public:		
Sworn before me this	day of	, 20	
(Name)			
Notary Public for the state of_ Please affix State seal if you as	re commissioned outside	South Carolina	

VI. UST INFORMATION	222Cypress
Product(ex. Gas, Kerosene)	Heating oil
Capacity(ex. 1k, 2k)	280 gal
Age	Late 1950s
Construction Material(ex. Steel, FRP)	Steel
Month/Year of Last Use	Mid 1980s
Depth (ft.) To Base of Tank	6'
Spill Prevention Equipment Y/N	No
Overfill Prevention Equipment Y/N	No
Method of Closure Removed/Filled	Removed
	7/2/2013
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	Yes
Method of disposal for any USTs removed from the UST 222Cypress was removed from the See Attachment "A".	ne ground (attach disposal manifests) The ground, cleaned and recycled
Method of disposal for any USTs removed from the UST 222Cypress was removed from the See Attachment "A". Method of disposal for any liquid petroleum, sludgedisposal manifests)	ne ground (attach disposal manifests) the ground, cleaned and recycle ges, or wastewaters removed from the USTs
Contaminated water was pumped fr by MCAS.	om UST 222Cypress and disposed
	Product(ex. Gas, Kerosene)

VII. PIPING INFORMATION

		222Cypress		
		Steel		
C	onstruction Material(ex. Steel, FRP)	& Copper		
D	istance from UST to Dispenser	N/A		
N	umber of Dispensers	N/A		
T	ype of System Pressure or Suction	Suction		
W	as Piping Removed from the Ground? Y/N	No		
V	isible Corrosion or Pitting Y/N	Yes		
V	isible Holes Y/N	No		
A	gege	Late 1950s		
If	any corrosion, pitting, or holes were observed,			
	Corrosion and pitting were foun	d on the surface		Ve
-		4 Bullion College Constitution		
	pipe. Copper supply and return	lines were sound.		
	pipe. Copper supply and return	lines were sound.		
	pipe. Copper supply and return	lines were sound.		
	VIII. BRIEF SITE DESCF	RIPTION AND HIS	TORY	eel
		RIPTION AND HIS constructed of sin	FORY ngle wall ste	el
-	VIII. BRIEF SITE DESCE The USTs at the residences are c	RIPTION AND HIS constructed of sin for heating. Thes	FORY ngle wall ste se USTs were	eel
-	VIII. BRIEF SITE DESCE The USTs at the residences are cand formerly contained fuel oil	RIPTION AND HIS constructed of sin for heating. Thes	FORY ngle wall ste se USTs were	eel
-	VIII. BRIEF SITE DESCE The USTs at the residences are cand formerly contained fuel oil	RIPTION AND HIS constructed of sin for heating. Thes	FORY ngle wall ste se USTs were	eel
-	VIII. BRIEF SITE DESCE The USTs at the residences are cand formerly contained fuel oil	RIPTION AND HIS constructed of sin for heating. Thes	FORY ngle wall ste se USTs were	eel

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the U excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.	ST	х	
B. Were any petroleum odors detected in the excavation, soil borings trenches, or monitoring wells? *Slight odor noted in the excavation of the excavation	n excavat	ion.	
C. Was water present in the UST excavation, soil borings, or trenche If yes, how far below land surface (indicate location and depth)?	ss?	х	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		х	
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.	1	х	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

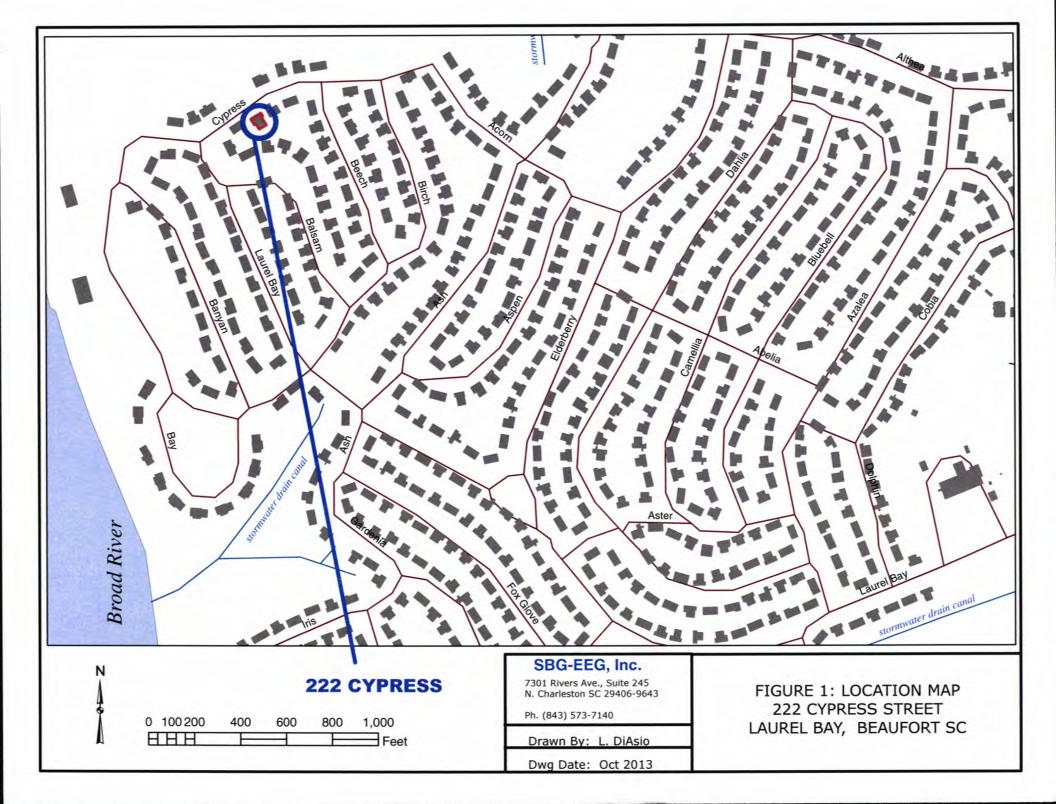
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
222 Cypress	Excav at fill end	Soil	Sandy	6'	7/2/13 1515 hrs	P. Shaw	
-							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

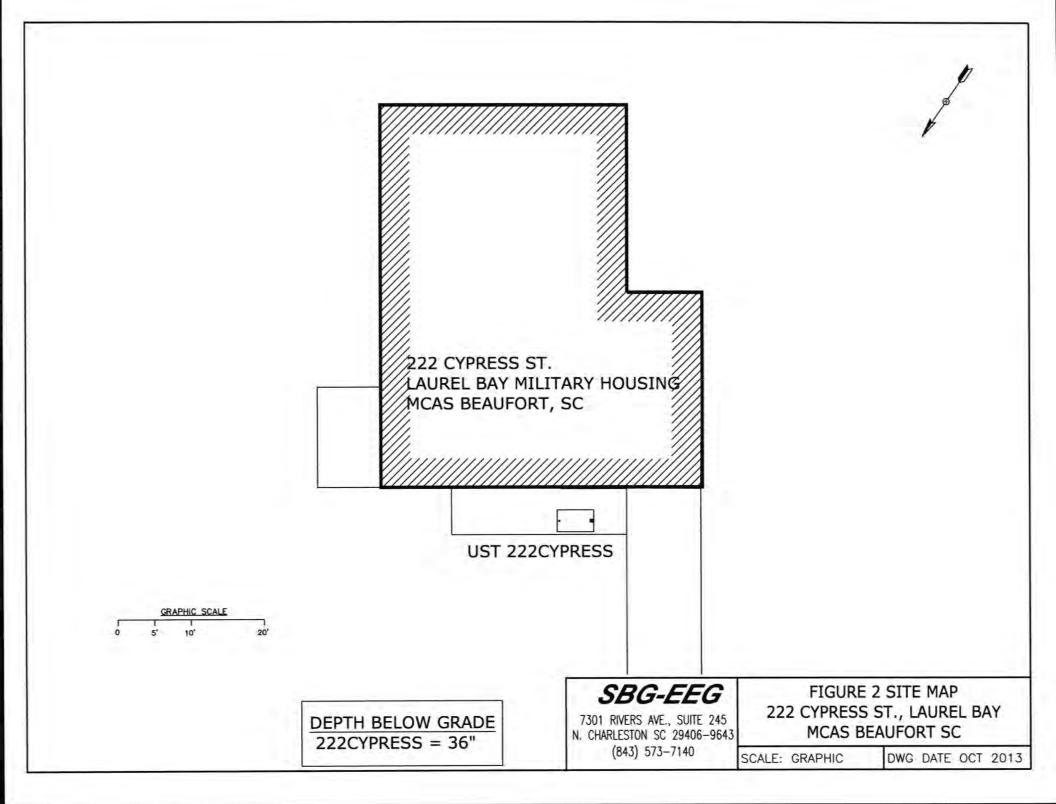
^{* =} Depth Below the Surrounding Land Surface

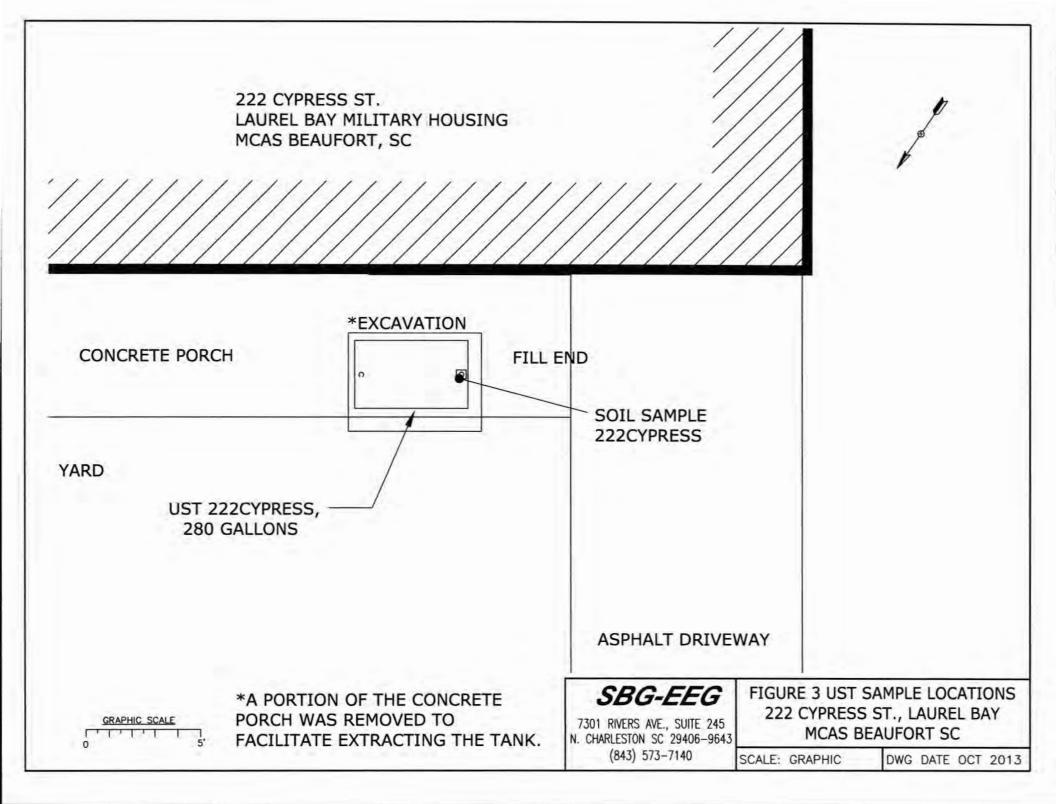
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		х
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electricicable, fiber optic & geo		nal
	If yes, indicate the type of utility, distance, and direction on the site map.	CHCI	
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		Х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 222Cypress.

Picture 2: UST 222Cypress excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	222Cypress				
Benzene	ND	FT			
Toluene	ND				
Ethylbenzene	ND	1			
Xylenes	ND				
Naphthalene	ND				
Benzo (a) anthracene	ND				
Benzo (b) fluoranthene	ND				
Benzo (k) fluoranthene	ND				
Chrysene	ND				
Dibenz (a, h) anthracene	ND			10 1	
TPH (EPA 3550)					
CoC					
Benzene					
Toluene			5/4		
Ethylbenzene					
Xylenes					
Naphthalene					
Benzo (a) anthracene					
Benzo (b) fluoranthene					
Benzo (k) fluoranthene					
Chrysene					
Dibenz (a, h) anthracene					
TPH (EPA 3550)					

SUMMARY OF ANALYSIS RESULTS (cont'd)

Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

Did You Remember to Include the Following?

- -- Permit ID Number
- -- Sample Collection and Storage Methods
- -- Preservative used in the sample containers
- -- Scaled Site Map with ALL Requested Information
- -- Laboratory Chain-of-Custody Form
- -- Certified Analytical Results
- -- Completed and Notarized Insurance Statement
- -- A Copy of Your Environmental Insurance Policy (if applicable)
- -- Samples from all Dispenser Islands and Piping Runs
- -- Photographs (if available)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-30480-1 Client Project/Site: Laurel Bay Site

For:

Small Business Group Inc. 10179 Highway 78 Ladson, South Carolina 29456

Attn: Tom McElwee

Kuth Haye Authorized for release by:

7/22/2013 12:15:22 PM

Ken Hayes, Project Manager I ken.hayes@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

ò	
ю	

12
11-20
(2.7)
233
1 1000 E
7 -9

Cover Page	į
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	3
	12
Chronicle	13
Method Summary	14
Certification Summary	15
Chain of Custody	16
Receipt Checklists	18

Sample Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-30480-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-30480-1	220 Cypress	Solid	07/01/13 14:15	07/09/13 08:15
490-30480-2	222 Cypress	Solid	07/02/13 15:15	07/09/13 08:15

Case Narrative

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-30480-1

3

Job ID: 490-30480-1

Laboratory: TestAmerica Nashville

4

Narrative

Job Narrative 490-30480-1 7

Comments

No additional comments.

7

Receipt

The samples were received on 7/9/2013 8:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.6° C.

1

GC/MS VOA

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 91944. See LCS/LCSD

10

No other analytical or quality issues were noted.

0

GC/MS Semi VOA

No analytical or quality issues were noted.

2

Organic Prep

No analytical or quality issues were noted.

1K

VOA Prep

No analytical or quality issues were noted.

Definitions/Glossary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-30480-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Client Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-30480-1

Client Sample ID: 220 Cypress

Date Collected: 07/01/13 14:15 Date Received: 07/09/13 08:15

Lab Sample ID: 490-30480-1

Matrix: Solid Percent Solids: 78.4

	ŀ	ē		
	Ø			Ī
	r	^	и	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00258	0.000865	mg/Kg	22	07/10/13 10:29	07/10/13 15:21	1
Ethylbenzene	ND		0.00258	0.000865	mg/Kg	n	07/10/13 10:29	07/10/13 15:21	1
Naphthalene	ND		0.00646	0.00219	mg/Kg	n	07/10/13 10:29	07/10/13 15:21	1
Toluene	ND		0.00258	0.000955	mg/Kg	¤	07/10/13 10:29	07/10/13 15:21	1
Xylenes, Total	ND		0.00646	0.000865	mg/Kg	n	07/10/13 10:29	07/10/13 15:21	1
L	22	Action and the							D# 5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	70 - 130	07/10/13 10:29	07/10/13 15:21	1
4-Bromofluorobenzene (Surr)	102	70 - 130	07/10/13 10:29	07/10/13 15:21	1
Dibromofluoromethane (Surr)	103	70 - 130	07/10/13 10:29	07/10/13 15:21	1
Toluene-d8 (Surr)	103	70 - 130	07/10/13 10:29	07/10/13 15:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0855	0.0128	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Acenaphthylene	ND		0.0855	0.0115	mg/Kg	12	07/10/13 13:49	07/13/13 21:38	1
Anthracene	ND		0.0855	0.0115	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Benzo[a]anthracene	0.316		0.0855	0.0191	mg/Kg	33	07/10/13 13:49	07/13/13 21:38	1
Benzo[a]pyrene	0.181		0.0855	0.0153	mg/Kg	12	07/10/13 13:49	07/13/13 21:38	1
Benzo[b]fluoranthene	0.349		0.0855	0.0153	mg/Kg	Ω	07/10/13 13:49	07/13/13 21:38	1
Benzo[g,h,i]perylene	0.0664	J	0.0855	0.0115	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Benzo[k]fluoranthene	0.106		0.0855	0.0179	mg/Kg	33	07/10/13 13:49	07/13/13 21:38	1
1-Methylnaphthalene	ND		0.0855	0.0179	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Pyrene	0.231		0.0855	0.0153	mg/Kg	D	07/10/13 13:49	07/13/13 21:38	1
Phenanthrene	ND		0.0855	0.0115	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Chrysene	0.354		0.0855	0.0115	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Dibenz(a,h)anthracene	ND		0.0855	0.00893	mg/Kg	300	07/10/13 13:49	07/13/13 21:38	1
Fluoranthene	0.200		0.0855	0.0115	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Fluorene	ND		0.0855	0.0153	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Indeno[1,2,3-cd]pyrene	0.0676	J	0.0855	0.0128	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Naphthalene	ND		0.0855	0.0115	mg/Kg	x	07/10/13 13:49	07/13/13 21:38	1
2-Methylnaphthalene	ND		0.0855	0.0204	mg/Kg	n	07/10/13 13:49	07/13/13 21:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	35		29 - 120				07/10/13 13:49	07/13/13 21:38	1
Terphenyl-d14 (Surr)	40		13 - 120				07/10/13 13:49	07/13/13 21:38	1
Nitrobenzene-d5 (Surr)	41		27 - 120				07/10/13 13:49	07/13/13 21:38	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
			0.40	0.40	0/			07/40/40 00.40	

40		13 - 120				07/10/13 13:49	07/13/13 21:38	1
41		27 - 120				07/10/13 13:49	07/13/13 21:38	1
Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
78		0.10	0.10	%			07/10/13 09:12	1
	41 Result	41 Result Qualifier	41 27 - 120 Result Qualifier RL	41 27 - 120 Result Qualifier RL RL	41 27 - 120 Result Qualifier RL RL Unit	41 27 - 120 Result Qualifier RL RL Unit D	41 27 - 120 07/10/13 13:49 Result Qualifier RL RL Unit D Prepared	41 27 - 120 07/10/13 13:49 07/13/13 21:38 Result Qualifier RL RL Unit D Prepared Analyzed

Client Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-30480-1

E

Client Sample ID: 222 Cypress

Date Collected: 07/02/13 15:15 Date Received: 07/09/13 08:15 Lab Sample ID: 490-30480-2

Matrix: Solid Percent Solids: 86.8

		п	
4.0	Water.		C
	_		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00264	0.000883	mg/Kg	n	07/10/13 10:29	07/10/13 15:51	1
Ethylbenzene	ND		0.00264	0.000883	mg/Kg	n	07/10/13 10:29	07/10/13 15:51	1
Naphthalene	ND		0.00659	0.00224	mg/Kg	D	07/10/13 10:29	07/10/13 15:51	1
Toluene	ND		0.00264	0.000976	mg/Kg	n	07/10/13 10:29	07/10/13 15:51	1
Xylenes, Total	ND		0.00659	0.000883	mg/Kg	323	07/10/13 10:29	07/10/13 15:51	1

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	70 - 130	07/10/13 10:29	07/10/13 15:51	1
4-Bromofluorobenzene (Surr)	99	70 - 130	07/10/13 10:29	07/10/13 15:51	1
Dibromofluoromethane (Surr)	103	70 - 130	07/10/13 10:29	07/10/13 15:51	1
Toluene-d8 (Surr)	103	70 - 130	07/10/13 10:29	07/10/13 15:51	1

. D. G									
Dibromofluoromethane (Surr)	103		70 - 130				07/10/13 10:29	07/10/13 15:51	1
Toluene-d8 (Surr)	103		70 - 130				07/10/13 10:29	07/10/13 15:51	1
Method: 8270D - Semivolatile (Organic Compou	nds (GC/MS	S)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0757	0.0113	mg/Kg	1X	07/10/13 13:49	07/13/13 23:00	1
Acenaphthylene	ND		0.0757	0.0102	mg/Kg	122	07/10/13 13:49	07/13/13 23:00	1
Anthracene	ND		0.0757	0.0102	mg/Kg	n	07/10/13 13:49	07/13/13 23:00	1
Benzo[a]anthracene	ND		0.0757	0.0169	mg/Kg	22	07/10/13 13:49	07/13/13 23:00	1
Benzo[a]pyrene	ND		0.0757	0.0136	mg/Kg	22	07/10/13 13:49	07/13/13 23:00	1
Benzo[b]fluoranthene	ND		0.0757	0.0136	mg/Kg	n	07/10/13 13:49	07/13/13 23:00	1
Benzo[g,h,i]perylene	ND		0.0757	0.0102	mg/Kg	22	07/10/13 13:49	07/13/13 23:00	1
Benzo[k]fluoranthene	ND		0.0757	0.0158	mg/Kg	n	07/10/13 13:49	07/13/13 23:00	1
1-Methylnaphthalene	ND		0.0757	0.0158	mg/Kg	***	07/10/13 13:49	07/13/13 23:00	1
Pyrene	ND		0.0757	0.0136	mg/Kg	XX	07/10/13 13:49	07/13/13 23:00	1
Phenanthrene	ND		0.0757	0.0102	mg/Kg	n	07/10/13 13:49	07/13/13 23:00	1
Chrysene	ND		0.0757	0.0102	mg/Kg	32	07/10/13 13:49	07/13/13 23:00	1
Dibenz(a,h)anthracene	ND		0.0757	0.00791	mg/Kg	n	07/10/13 13:49	07/13/13 23:00	1
Fluoranthene	ND		0.0757	0.0102	mg/Kg	22	07/10/13 13:49	07/13/13 23:00	1
Fluorene	ND		0.0757	0.0136	mg/Kg	n	07/10/13 13:49	07/13/13 23:00	1
Indeno[1,2,3-cd]pyrene	ND		0.0757	0.0113	mg/Kg	n	07/10/13 13:49	07/13/13 23:00	1
Naphthalene	ND		0.0757	0.0102	mg/Kg	n	07/10/13 13:49	07/13/13 23:00	1
2-Methylnaphthalene	ND		0.0757	0.0181	mg/Kg	Ħ	07/10/13 13:49	07/13/13 23:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	48		29 - 120				07/10/13 13:49	07/13/13 23:00	1
Terphenyl-d14 (Surr)	63		13 - 120				07/10/13 13:49	07/13/13 23:00	1
Nitrobenzene-d5 (Surr)	48		27 - 120				07/10/13 13:49	07/13/13 23:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL		D	Prepared	Analyzed	Dil Fac
Percent Solids	87		0.10	0.10	%			07/10/13 09:12	1

TestAmerica	Nashville

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-30480-1

Client Sample ID: Method Blank

Analyzed

07/10/13 12:37

07/10/13 12:37

07/10/13 12:37

07/10/13 12:37

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Dil Fac

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-91944/7

Matrix: Solid

Surrogate

Analysis Batch: 91944

MB MB

97

100

103

105

Qualifier

%Recovery

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			07/10/13 12:37	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			07/10/13 12:37	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			07/10/13 12:37	1
Toluene	ND		0.00200	0.000740	mg/Kg			07/10/13 12:37	1
Xylenes, Total	ND		0.00500	0.000670	mg/Kg			07/10/13 12:37	1

Limits

70 - 130 70 - 130

70 - 130

70 - 130

Toluene-d8 (Surr)

Lab Sample ID: LCS 490-91944/4 Matrix: Solid

Analysis Batch: 91944

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	

Prepared

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
0.0500	0.05052		mg/Kg		101	75 - 127
0.0500	0.05420		mg/Kg		108	80 - 134
0.0500	0.05638		mg/Kg		113	69 - 150
0.0500	0.05158		mg/Kg		103	80 - 132
0.150	0.1615		mg/Kg		108	80 - 137
	Added 0.0500 0.0500 0.0500 0.0500 0.150	Added Result 0.0500 0.05052 0.0500 0.05420 0.0500 0.05638 0.0500 0.05158 0.150 0.1615	Added Result Qualifier 0.0500 0.05052 0.0500 0.05420 0.0500 0.05638 0.0500 0.05158 0.150 0.1615	Added Result Qualifier Unit 0.0500 0.05052 mg/Kg 0.0500 0.05420 mg/Kg 0.0500 0.05638 mg/Kg 0.0500 0.05158 mg/Kg 0.150 0.1615 mg/Kg	Added Result Qualifier Unit D 0.0500 0.05052 mg/Kg 0.0500 0.05420 mg/Kg 0.0500 0.05638 mg/Kg 0.0500 0.05158 mg/Kg 0.150 0.1615 mg/Kg	Added Result Qualifier Unit D %Rec 0.0500 0.05052 mg/Kg 101 0.0500 0.05420 mg/Kg 108 0.0500 0.05638 mg/Kg 113 0.0500 0.05158 mg/Kg 103 0.150 0.1615 mg/Kg 108

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	104		70 - 130
Toluene-d8 (Surr)	105		70 - 130

Lab Sample ID: LCSD 490-91944/5

Matrix: Solid

Analysis Batch: 91944

Analysis Batch. 91944	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.04905		mg/Kg		98	75 - 127	3	50
Ethylbenzene	0.0500	0.05226		mg/Kg		105	80 - 134	4	50
Naphthalene	0.0500	0.05581		mg/Kg		112	69 - 150	1	50
Toluene	0.0500	0.04996		mg/Kg		100	80 - 132	3	50
Xylenes, Total	0.150	0.1535		mg/Kg		102	80 - 137	5	50

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	105		70 - 130
Toluene-d8 (Surr)	104		70 - 130

TestAmerica Nashville

Prep Type: Total/NA

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-30480-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 92065

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

MB MB %Recovery Qualifier

60

78

57

Lab Sample ID: MB 490-92065/1-A

Matrix: Solid

Analysis Batch: 92821

Analysis Baton, 5252	мв	мв						10.1	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Anthracene	ND		0.0670	0.00900	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Pyrene	ND		0.0670	0.0120	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Chrysene	ND		0.0670	0.00900	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Fluorene	ND		0.0670	0.0120	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		07/10/13 13:49	07/13/13 21:10	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		07/10/13 13:49	07/13/13 21:10	1

Nitrobenzene-d5 (Surr)	
Lab Sample ID: LCS 490-92065/2-A	

Matrix: Solid

2-Fluorobiphenyl (Surr)

Terphenyl-d14 (Surr)

Surrogate

Analysis Batch: 92821

Limits	Prepared	Analyzed	Dil Fac	
29 - 120	07/10/13 13:49	07/13/13 21:10	1	
13 - 120	07/10/13 13:49	07/13/13 21:10	1	
27 - 120	07/10/13 13:49	07/13/13 21:10	1	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 92065

Allalysis Batch, 92021	Spike	LCS	LCS				%Rec.	on. ozooc
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	1.67	1.196		mg/Kg		72	38 - 120	
Anthracene	1.67	1.392		mg/Kg		84	46 - 124	
Benzo[a]anthracene	1.67	1.423		mg/Kg		85	45 - 120	
Benzo[a]pyrene	1.67	1.345		mg/Kg		81	45 - 120	
Benzo[b]fluoranthene	1.67	1.467		mg/Kg		88	42 - 120	
Benzo[g,h,i]perylene	1.67	1.464		mg/Kg		88	38 - 120	
Benzo[k]fluoranthene	1.67	1.227		mg/Kg		74	42 - 120	
1-Methylnaphthalene	1.67	1.162		mg/Kg		70	32 - 120	
Pyrene	1.67	1.383		mg/Kg		83	43 - 120	
Phenanthrene	1.67	1.378		mg/Kg		83	45 - 120	
Chrysene	1.67	1.435		mg/Kg		86	43 - 120	
Dibenz(a,h)anthracene	1.67	1.449		mg/Kg		87	32 - 128	
Fluoranthene	1.67	1.435		mg/Kg		86	46 - 120	
Fluorene	1.67	1.335		mg/Kg		80	42 - 120	
Indeno[1,2,3-cd]pyrene	1.67	1.341		mg/Kg		80	41 - 121	
Naphthalene	1.67	1.151		mg/Kg		69	32 - 120	
2-Methylnaphthalene	1.67	1.182		mg/Kg		71	28 - 120	

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-30480-1

M

0

Lab Sample ID: LCS 490-92065/2-A

Lab Sample ID: 490-30480-1 MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 92821

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 92065

ep Batch: 92065

0

LCS LCS

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	49		29 - 120
Terphenyl-d14 (Surr)	66		13 - 120
Nitrobenzene-d5 (Surr)	48		27 - 120

Client Sample ID: 220 Cypress

Prep Type: Total/NA

Prep Batch: 92065

9

Analysis Batch: 92821

Sample Sample Spike MS MS

Analyte Result Qualifier Added Result Qualifier Unit

ND

ND

0.0676 J

ND

44

0.200

%Rec. Limits 25 - 120 28 - 125 23 - 120

%Rec

71

81

75

67

53

56

12 - 128

10 - 143

20 - 120

22 - 121

10 - 120

13 - 120

Į.

ä ND 2.11 1.448 mg/Kg 68 Acenaphthylene 2.11 Anthracene ND 1.682 mg/Kg 80 Benzo[a]anthracene 0.316 2.11 1.720 mg/Kg 66 0.181 2.11 1.593 mg/Kg 67 15 - 128 Benzo[a]pyrene 72 12 - 133 0.349 2.11 1.861 mg/Kg Benzo[b]fluoranthene 70 22 - 120 Benzo[g,h,i]perylene 0.0664 2.11 1.550 mg/Kg 2.11 1.456 64 28 - 120 Benzo[k]fluoranthene 0.106 mg/Kg 2.11 1.251 59 10 - 120 ND mg/Kg 1-Methylnaphthalene 72 20 - 123 2.11 1.746 Pyrene 0.231 mg/Kg ND 2.11 1.608 mg/Kg 76 21 - 122 Phenanthrene 20 - 120 0.354 2.11 1.732 mg/Kg Chrysene

2.11

2.11

2.11

2.11

2.11

27 - 120

1.499

1.904

1.587

1.481

1.121

1.193

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

 MS
 MS

 Surrogate
 %Recovery
 Qualifier
 Limits

 2-Fluorobiphenyl (Surr)
 40
 29 - 120

 Terphenyl-d14 (Surr)
 48
 13 - 120

Lab Sample ID: 490-30480-1 MSD

Matrix: Solid

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Nitrobenzene-d5 (Surr)

Fluoranthene

Naphthalene

Fluorene

Analysis Batch: 92821

Client Sample ID: 220 Cypress Prep Type: Total/NA

Prep Batch: 92065

Allalysis Datoll. 32021									1 1 CP	Duton.	32000
And the second second	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		2.09	1.525		mg/Kg	Ħ	73	25 - 120	5	50
Anthracene	ND		2.09	1.582		mg/Kg	n	76	28 - 125	6	49
Benzo[a]anthracene	0.316		2.09	1.942		mg/Kg	32	78	23 - 120	12	50
Benzo[a]pyrene	0.181		2.09	1.643		mg/Kg	n	70	15 - 128	3	50
Benzo[b]fluoranthene	0.349		2.09	1.801		mg/Kg	23.	70	12 - 133	3	50
Benzo[g,h,i]perylene	0.0664	J	2.09	1.578		mg/Kg	TI.	72	22 - 120	2	50
Benzo[k]fluoranthene	0.106		2.09	1.553		mg/Kg	TE .	69	28 - 120	6	45
1-Methylnaphthalene	ND		2.09	1.393		mg/Kg	128	67	10 - 120	11	50
Pyrene	0.231		2.09	1.834		mg/Kg	n	77	20 - 123	5	50
Phenanthrene	ND		2.09	1.491		mg/Kg	Œ	71	21 - 122	8	50
Chrysene	0.354		2.09	1.927		mg/Kg	¤	75	20 - 120	11	49

TestAmerica Nashville

Page 10 of 18

7/22/2013

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-30480-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MSD MSD %Recovery Qualifier

43

51

44

Lab Sample ID: 490-30480-1 MSD

Matrix: Solid

Analysis Batch: 92821

Client Sample ID: 220 Cypress
Prep Type: Total/NA

Client Sample ID: 220 Cypress

Prep Type: Total/NA

Prep Batch: 92065

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibenz(a,h)anthracene	ND		2.09	1.601		mg/Kg	n	77	12 - 128	7	50
Fluoranthene	0.200		2.09	1.814		mg/Kg	X	77	10 - 143	5	50
Fluorene	ND		2.09	1.547		mg/Kg	n	74	20 - 120	3	50
Indeno[1,2,3-cd]pyrene	0.0676	J	2.09	1.537		mg/Kg	n	70	22 - 121	4	50
Naphthalene	ND		2.09	1.371		mg/Kg	n	66	10 - 120	20	50
2-Methylnaphthalene	ND		2.09	1.339		mg/Kg	¤	64	13 - 120	12	50

Limits

29 - 120

13 - 120

27 - 120

Method: Moisture - Percent Moisture

Lab Sample ID: 490-30480-1 DU

Matrix: Solid

Surrogate

2-Fluorobiphenyl (Surr)

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	78		81		%		3	20

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-30480-1

GC/MS VOA

Analysis Batch: 91944

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-30480-1	220 Cypress	Total/NA	Solid	8260B	91992
490-30480-2	222 Cypress	Total/NA	Solid	8260B	91992
LCS 490-91944/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-91944/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-91944/7	Method Blank	Total/NA	Solid	8260B	

Prep Batch: 91992

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-30480-1	220 Cypress	Total/NA	Solid	5035	
490-30480-2	222 Cypress	Total/NA	Solid	5035	

GC/MS Semi VOA

Prep Batch: 92065

N William Walker				121217-011	Calcinote an ending
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-30480-1	220 Cypress	Total/NA	Solid	3550C	
490-30480-1 MS	220 Cypress	Total/NA	Solid	3550C	
490-30480-1 MSD	220 Cypress	Total/NA	Solid	3550C	
490-30480-2	222 Cypress	Total/NA	Solid	3550C	
LCS 490-92065/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-92065/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 92821

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
220 Cypress	Total/NA	Solid	8270D	92065
220 Cypress	Total/NA	Solid	8270D	92065
220 Cypress	Total/NA	Solid	8270D	92065
222 Cypress	Total/NA	Solid	8270D	92065
Lab Control Sample	Total/NA	Solid	8270D	92065
Method Blank	Total/NA	Solid	8270D	92065
	220 Cypress 220 Cypress 220 Cypress 222 Cypress Lab Control Sample	220 Cypress Total/NA 220 Cypress Total/NA 220 Cypress Total/NA 222 Cypress Total/NA Lab Control Sample Total/NA	220 Cypress Total/NA Solid 220 Cypress Total/NA Solid 220 Cypress Total/NA Solid 222 Cypress Total/NA Solid Lab Control Sample Total/NA Solid	220 Cypress Total/NA Solid 8270D 220 Cypress Total/NA Solid 8270D 220 Cypress Total/NA Solid 8270D 222 Cypress Total/NA Solid 8270D Lab Control Sample Total/NA Solid 8270D

General Chemistry

Analysis Batch: 91951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-30480-1	220 Cypress	Total/NA	Solid	Moisture	
490-30480-1 DU	220 Cypress	Total/NA	Solid	Moisture	
490-30480-2	222 Cypress	Total/NA	Solid	Moisture	

Lab Chronicle

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-30480-1

Client Sample ID: 220 Cypress

Date Collected: 07/01/13 14:15 Date Received: 07/09/13 08:15

Lab Sample ID: 490-30480-1

Matrix: Solid

Percent Solids: 78.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			91992	07/10/13 10:29	MLN	TAL NSH
Total/NA	Analysis	8260B		1	91944	07/10/13 15:21	KKK	TAL NSH
Total/NA	Prep	3550C			92065	07/10/13 13:49	JLP	TAL NSH
Total/NA	Analysis	8270D		1	92821	07/13/13 21:38	BES	TAL NSH
Total/NA	Analysis	Moisture		1	91951	07/10/13 09:12	RRS	TAL NSH

Client Sample ID: 222 Cypress

Analysis

Moisture

Date Collected: 07/02/13 15:15 Date Received: 07/09/13 08:15

Lab Sample ID: 490-30480-2

TAL NSH

Matrix: Solid

Percent Solids: 86.8

Batch Batch Dilution Batch Prepared or Analyzed Analyst Lab **Prep Type** Method Run Factor Number Type 91992 07/10/13 10:29 MLN TAL NSH Total/NA Prep 5035 Total/NA 8260B 91944 07/10/13 15:51 KKK TAL NSH Analysis 92065 07/10/13 13:49 JLP TAL NSH Prep 3550C Total/NA 92821 TAL NSH 07/13/13 23:00 BES Total/NA Analysis 8270D

91951

07/10/13 09:12 RRS

Laboratory References:

Total/NA

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-30480-1

....

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

6

Laboratory References

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

9

10

12

13

Certification Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-30480-1

4

6

8

10

11

12

IE.

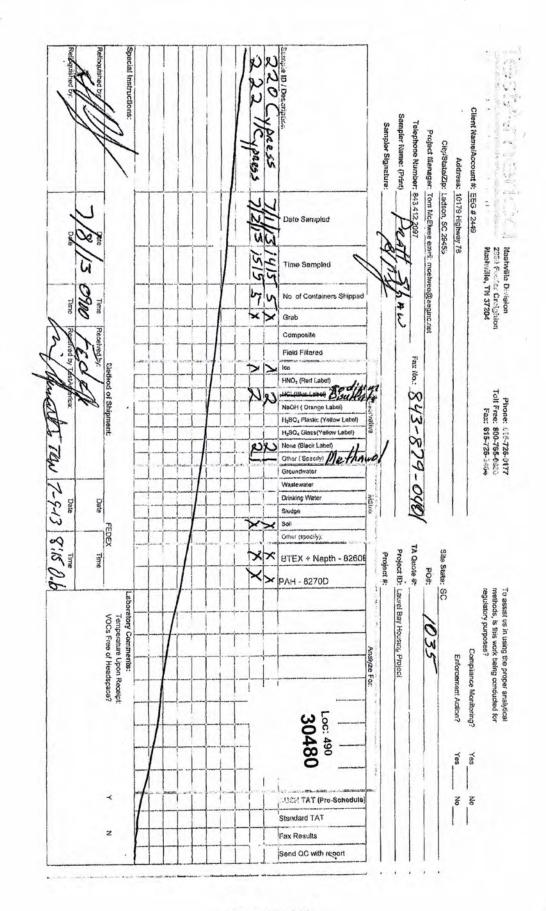
Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	ACIL		393	10-30-13
A2LA	ISO/IEC 17025		0453.07	12-31-13
Alaska (UST)	State Program	10	UST-087	07-24-13
Arizona	State Program	9	AZ0473	05-05-14
Arkansas DEQ	State Program	6	88-0737	04-25-14
California	NELAP	9	1168CA	10-31-13
Connecticut	State Program	1	PH-0220	12-31-13
Florida	NELAP	4	E87358	06-30-14
Ilinois	NELAP	5	200010	12-09-13
owa	State Program	7	131	05-01-14
Kansas	NELAP	7	E-10229	10-31-13
Centucky (UST)	State Program	4	19	09-15-13
Louisiana	NELAP	6	30613	06-30-14
Maryland	State Program	3	316	03-31-14
Massachusetts	State Program	1	M-TN032	06-30-14
Minnesota	NELAP	5	047-999-345	12-31-13
Mississippi	State Program	4	N/A	06-30-14
Montana (UST)	State Program	8	NA	01-01-15
Nevada	State Program	9	TN00032	07-31-13
New Hampshire	NELAP	1	2963	10-10-13
New Jersey	NELAP	2	TN965	06-30-14
New York	NELAP	2	11342	04-01-14
North Carolina DENR	State Program	4	387	12-31-13
North Dakota	State Program	8	R-146	06-30-13 *
Ohio VAP	State Program	5	CL0033	01-19-14
Oklahoma	State Program	6	9412	08-31-13
Oregon	NELAP	10	TN200001	04-29-14
Pennsylvania	NELAP	3	68-00585	06-30-14
Rhode Island	State Program	1	LAO00268	12-30-13
South Carolina	State Program	4	84009 (001)	02-28-14
South Carolina	State Program	4	84009 (002)	02-23-14
Tennessee	State Program	4	2008	02-23-14
Texas	NELAP	6	T104704077-09-TX	08-31-13
JSDA	Federal		S-48469	11-02-13
Jtah	NELAP	8	TAN	07-30-13 *
/irginia	NELAP	3	460152	06-14-14
Washington	State Program	10	C789	07-19-13
West Virginia DEP	State Program	3	219	02-28-14
Wisconsin	State Program	5	998020430	08-31-13
Wyoming (UST)	A2LA	8	453.07	12-31-13

^{*} Expired certification is currently pending renewal and is considered valid.

COOLER RECEIPT FO



Cooler Received/Opened On: 07/09/13 @ 0815 (last 4 digits, FedEx) Courier: Fed-ex IR Gun: 17960357 1. Temperature of rep. sample or temp blank when opened: 3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? YES NO... NO...NA 4. Were custody seals on outside of cooler? If yes, how many and where: .NO...NA 5. Were the seals intact, signed, and dated correctly? 6. Were custody papers inside cooler? NO...NA I certify that I opened the cooler and answered questions 1-6 (intial) YES (Ng and Intact NO (NA 7. Were custody seals on containers: YES...NO. NA Were these signed and dated correctly? 8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper Other None Ice-pack Ice (direct contact) Dry ice 9. Cooling process: 10. Did all containers arrive in good condition (unbroken)? YES ... NO ... NA .NO...NA 11. Were all container labels complete (#, date, signed, pres., etc)? 12. Did all container labels and tags agree with custody papers? ..NO...NA YES...NO...NA 13a. Were VOA vials received? YES. (NO...NA b. Was there any observable headspace present in any VOA vial? YES (.NO) .NA If multiple coolers, sequence # 14. Was there a Trip Blank in this cooler? I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YES...NO. (NA) YES ... NO ... NA b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) YES .. NO ... NA 17. Were custody papers properly filled out (lnk, signed, etc)? 18. Did you sign the custody papers in the appropriate place? YES ... NO ... NA ..NO...NA 19. Were correct containers used for the analysis requested? YES ... NO ... NA 20. Was sufficient amount of sample sent in each container? I certify that I entered this project into LIMS and answered questions 17-20 (intial) I certify that I attached a label with the unique LIMS number to each container (intial)

21. Were there Non-Conformance issues at login? YES.(NO) Was a NCM generated? YES.(NO)...#_

H

Login Sample Receipt Checklist

Job Number: 490-30480-1

Client: Small Business Group Inc.

Login Number: 30480 List Number: 1

er: 1

List Source: TestAmerica Nashville

Liot Ituii		
Creator	Ahernathy	Fric

Radioactivity wasn't checked or is = background as measured by a survey meter. The cooler's custody seal, if present, is intact. True Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or true tampered with. Samples were received on ice. True</th <th></th>	
Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or true tampered with. Samples were received on ice. True	
The cooler or samples do not appear to have been compromised or true tampered with. Samples were received on ice. True	
tampered with. Samples were received on ice. True	
1.4 (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
Cooler Temperature is acceptable.	
Cooler Temperature is recorded.	
COC is present.	
COC is filled out in ink and legible.	
COC is filled out with all pertinent information.	
Is the Field Sampler's name present on COC?	
There are no discrepancies between the containers received and the COC.	
Samples are received within Holding Time.	
Sample containers have legible labels.	
Containers are not broken or leaking.	
Sample collection date/times are provided.	
Appropriate sample containers are used.	
Sample bottles are completely filled.	
Sample Preservation Verified. N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	
Multiphasic samples are not present.	
Samples do not require splitting or compositing.	
Residual Chlorine Checked. N/A	

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 222 Cypress; 222 Cypress Street, Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANK	SIZE (GAL)
Steel	280

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

(Name) (Date)

Appendix C Regulatory Correspondence

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer
Attention: NREAO Mr. William A. Drawdy
United State Marine Corps Air Station
Post Office Box 55001
Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports for:

See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg

Department of Defense Corrective Action Section

Bureau of Land and Waste Management

South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email)

Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Attachment to: Krieg to Drawdy

Subject: NFA
Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks)

111 Birch 363 Aspen 123 Banyan 364 Aspen 134 Banyan 366 Aspen 134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 201 Balsam 422 Elderberry 203 Balsam 424 Elderberry 208 Balsam 452 Elderberry 201 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 487 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 351 Ash Tan	111 Direct	262 Asman
131 Banyan 366 Aspen 134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 200 Balsam 410 Elderberry 200 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 1 641 Dahlia		
134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 317 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia <td></td> <td>1</td>		1
145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia <td></td> <td>1</td>		1
150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 422 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	<u> </u>	
153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	•	
154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 203 Balsam 420 Elderberry 208 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia		1
155 Laurel Bay		
200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 208 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia		ž
202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	v	ž
203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia		J
208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	202 Balsam	420 Elderberry
210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	203 Balsam	424 Elderberry
211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	208 Balsam	435 Elderberry Tank 3
220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	210 Balsam	452 Elderberry
222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	211 Balsam	460 Elderberry
223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	220 Cypress	465 Dogwood
252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	222 Cypress	477 Laurel Bay
271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	223 Cypress	487Laurel Bay
271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	252 Beech Tank 2	513 Laurel Bay
284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	271 Beech Tank 1	519 Laurel Bay
284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	271 Beech Tank 2	524 Laurel Bay
308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	284 Birch Tank 1	535 Laurel Bay
311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	284 Birch Tank 2	553 Dahlia
312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	308 Ash	590 Aster
317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	311 Ash	591 Aster
318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	312 Ash	610 Dahlia
337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	317 Ash	612 Dahlia
351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	318 Ash	628 Dahlia
351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	337 Ash	636 Dahlia
355 Ash Tank 1 641 Dahlia	351 Ash Tank 1	637 Dahlia Tank 1
355 Ash Tank 1 641 Dahlia	351 Ash Tank 2	637 Dahlia Tank 2
355 Ash Tank 2 642 Dahlia Tank 1		
360 Aspen 642 Dahlia Tank 2	360 Aspen	

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

655 Camellia	920 Albacore
662 Camellia	922 Barracuda Tank 1
683 Camellia	922 Barracuda Tank 2
684 Camellia	924 Albacore
689 Abelia	925 Albacore
694 Abelia	926 Albacore
695 Abelia	930 Albacore
741 Blue Bell	931 Albacore
742 Blue Bell	933 Albacore
755 Althea	936 Albacore
757 Althea	938 Albacore
776 Laurel Bay	939 Albacore
777 Azalea	940 Albacore
779 Laurel Bay	1010 Foxglove
781 Laurel Bay	1066 Gardenia
802 Azalea	1068 Gardenia
816 Azalea	1071 Heather Tank 2
822 Azalea	1100 Iris Tank 2
823 Azalea	1128 Iris
825 Azalea	1178 Bobwhite
828 Azalea	1204 Cardinal
837 Azalea	1208 Cardinal
851 Dolphin	1209 Cardinal
856 Dolphin	1210 Cardinal
857 Dolphin	1215 Cardinal
861 Dolphin	1216 Cardinal
864 Dolphin	1217 Cardinal Tank 1
868 Dolphin	1217 Cardinal Tank 2
872 Dolphin	1233 Dove
879 Cobia	1244 Dove
886 Cobia	1250 Dove
888 Cobia	1252 Dove
889 Cobia	1254 Dove
901 Barracuda	1256 Dove
902 Barracuda	1258 Dove
903 Barracuda	1263 Dove
904 Barracuda	1269 Dove
909 Barracuda	1276 Dove
910 Barracuda	1283 Dove
914 Barracuda	1285 Dove
915 Barracuda	1288 Eagle

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

1296 Eagle	1330 Albatross
1307 Eagle	1331 Albatross
1321 Albatross	1333 Albatross
1322 Albatross	1334 Albatross
1327 Albatross	1335 Albatross
1328 Albatross	